-Supplementary materials-

Ki-GAN: Knowledge Infusion Generative Adversarial Network for Photoacoustic Image Reconstruction in vivo

Hengrong Lan¹, Kang Zhou¹,², Changchun Yang¹, Jun Cheng², Jiang Liu¹,², Shenghua Gao¹ and Fei Gao¹

¹ School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
² Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, Ningbo 315201, China
³ Department of Computer Science and Engineering, Southern University of Science and Technology, Guangdong 518055, China

![Diagram](image)

Fig. S1. Adapted Auto-Encoder for Signal Processing Knowledge. Dotted area z' is the input of the convolutional layer, and the convolutional layer converts z' to the latent feature \hat{z}; green blocks indicate the signal’s features; blue blocks indicate the image’s features.
Fig. S2. Overview of our Discriminator. Note that we use convolutional kernel with 4×4 size, the receptive fields of output can still cover the entire input image.

Fig. S3. The performances of different hyper-parameters values. For all results, the $\lambda_{pix} = 1$.

\[L_{adv} \]
Fig. S4. More examples of quantitative comparison using full-sampled data. Different row indicates different sample; from left to right: ground-truth, delay-and-sum, U-Net and Ki-GAN.
Fig. S5. Examples of ablation studies. Different column indicates different sample: from top to bottom: ground-truth, U-Net1: input the signals and resize to concatenation, AE#1: Auto-Encoder, AE#2: AE#1 with PSSIK, AE#3: AE#2 with Image Feature Supervision, AE#4: AE#3 with Embedded Certified Knowledge, Ki-GAN.
Fig. S6. More examples of quantitative comparison using sparse-sampled data. Different row indicates different sample; from left to right: ground-truth, delay-and-sum, U-Net and Ki-GAN.